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ABSTRACT 

 

Colour detection is the process of detecting the name of any colour. Human eyes and brains work 

together to translate light into colour. Light receptors that are present in our eyes transmit the 

signal to the brain. Our brain then recognizes the colour. But one of the limitations of human 

brain is that it cannot recognize all the shades of colours. But, through this process we can detect 

even the shades of most of the colours (approximately around 1500) by placing a target object 

for which the colour should be detected in front of the camera. We are formulating a 

process/algorithm through which we can produce faster results in Iris detection by first 

considering the colour of the Iris and then scanning the user data with the reduced data through 

scale invariant feature transform (SIFT). Iris is one of the unique features which can be 

distinguished between two different individuals. Since the Iris feature are unique, this can be 

used in Biometric applications. Fingerprint biometrics are efficient, but one need to move to Iris 

scanning for the biometrics because this method is more hygienic and accurate. 
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CHAPTER 1 

INTRODUCTION 

A process for finding the colour of a sample is intended to develop firstly. Colour detection is the 

process of detecting the name of any colour. Human eyes and brains work together to translate 

light into colour. Light receptors that are present in our eyes transmit the signal to the brain. Our 

brain then recognizes the colour. But one of the limitations of human brain is that it cannot 

recognize all the shades of colours. Colours are made up of 3 primary colours; red, green, and 

blue. In computers, we define each colour value within a range of 0 to 255. So, we can define a 

colour in 256*256*256 = 16,581,375 ways. There are approximately 16.5 million different ways 

to represent a colour. Through this process we have targeted to detect most of the colours 

(approximately around 1500) and can display the name of the colour as the output and can be 

stored in data base, by giving a sample (Iris) through a camera as input. Using this technique, we 

are primarily focusing on detection of colour of the iris which is the main step in Iris scanning. 

Iris is one of the unique features that varies from person to person. It is unique to a level where 

the Iris features varies from one eye to the other of the same person. So, this unique 

identification feature can be used for biometric purposes. The problem with the conventional 

methods like fingerprint is that the error rate is present during biometric authentication and 

chance of duplication of fingerprint is there. In these cases, there will be a breach to the data 

integrity of the person. But we are still using the fingerprint biometric authentication because 

fingerprint biometrics are faster. Whereas on the other hand, even though the Iris biometrics is 

the more accurate and reliable than Fingerprint biometrics, searching of biometrics of a person 

through Iris can put high load on the processing system. So, to avoid this problem we are 

formulating a method to find the colour of the Iris. Before understanding this method, we need to 

know the biology of the Iris. The iris is a thin circular ring region, a part of the human eye 

positioned between the black pupil and white sclera presenting a unique and rich texture 

information, such as patterns, rifts, colours, rings, spots, stripes, filaments, coronal, furrows, 

minutiae and recess and other detailed characteristics seen under the infrared light. “Fig. 1” 

shows image of an Iris with all the patterns and texture. Out of all the features of an Iris 

mentioned above, we are concentrating on the colour pigment of the Iris. By using this process 

and first finding the colour and by screening the data available in the database based on 

identified colour, the data on which a system should verify to identify the biometrics of person 

an later through SIFT we can detect the actual biometrics of person by just matching with the 

reduced data due to which the system efficiency can improved. In this way the system capacity 

can be improved. 
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1.1 Project Overview:  

In this paper is to improve system efficiency during Iris detection by preliminary 

screening of data on basis of colour. From the result obtained we could see that the process we 

have developed can identify the colour of the Iris. On the basis of these results, it is clear that we 

can improve the efficiency of the biometric systems as a particular person’s biometric 

information is searched against only a limited set of data where the result colour matches with 

the colour of the Iris in the database, thereby improving the system efficiency. The motivation 

behind the formulating of this process is to develop more efficient biometrics system.  

 

1.2 Literature Survey  

Developing a high end security system for either identification or authentication purpose have 
always been an active research area and attractive goal in almost all fields. Traditional security 
systems provide security to a process or a product with the help of "something that we have or 
we know", i.e., a key or a password, whereas a biometric security system uses "something that 
we are", i.e., a person’s physical or behavioral traits. Physiological or behavioural traits of a 
person may include, but not limited to the following: face, finger print, iris, retina, voice, DNA, 
gait, etc. Biometric traits have highly reliable and unique features that make it best suited for 
security systems over a traditional or conventional security system. Jain et al. (1999) [1], 
identified seven factors that could be used to identify a person’s physical or behavioural 
characteristics as a biometric trait to be used in biometric security systems. They are (1) 
Universality (ease of availability in an individual), (2) Uniqueness (distinct characteristics), (3) 
Permanence (stability or durability), (4) Measurability or collectability (ease of acquisition), (5) 
Performance (quality of being efficient), (6) Acceptability (degree of approval) and (7) 
Circumvention (ease use of a substitute). Though a biometric trait cannot satisfy all of these, 
some of them must be satisfied to make a characteristic a biometric trait. For circumvent ability 
low is desirable instead of high. Based on the above observation, Iris satisfies almost all the 
factors with good score and hence used as a popular biometric trait in biometric recognition 
systems, among various other identifiers. Iris is a well protected muscle present inside the eye 
with unique and rich patterns like furrows, rings, freckles and crypts. It has a distinguishable 
colour, which is immutable and invariant over time. It has been proved that for an individual, 
there are differences in iris patterns even between right and left eye. Even iris patterns differ 
for twins, who are identical. Thus recognition techniques developed using iris patterns could be 
considered as a best suited identification and authentication technique, especially in areas like, 
physical or personal authentication systems, time and attendance maintenance systems, law 
enforcement systems, banking applications, etc. 
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1.3 Problem Definition:  

Among the different biometric modalities like a fingerprint, finger vein, palm vein, facial, retina, 

etc. iris is one of the most reliable ones. Iris biometric authentication is the complex 

mathematical pattern recognition technique that identifies the unique and stable video images of 

the single or both irises of an individual which is possible to distinguish from a distance 

range.The characteristics of an iris are significantly unique for each and can be recognized from 

a distance. That is why it is challenging to be forged and compared to other biometric modalities 

false acceptance rate and the false rejection rate is remarkably lower. Such way it becomes most 

secured authentication technology and has been used in hospitals, borders, financial institutes, 

and several sensitive projects. With this many advantages it is of utmost necessity to improve the 

Iris efficiency for faster results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

CHAPTER 2 

IRIS ANATOMY 

The iris is a thin, annular structure in the eye, responsible for controlling the diameter and size of 

the pupil, thus the amount of light reaching the retina. Eye colour is defined by that of the iris. In 

optical terms, the pupil is the eye's aperture, while the iris is the diaphragm. 

 

Fig.2.1 Human Iris  

 

2.1 STRUCTURE 

The iris consists of two layers: the front pigmented fibrovascular layer known as a stroma and, 

beneath the stroma, pigmented epithelial cells. 

The stroma is connected to a sphincter muscle (sphincter pupillae), which contracts the pupil in a 

circular motion, and a set of dilator muscles (dilator pupillae), which pull the iris radially to 

enlarge the pupil, pulling it in folds. 

The circle circumference sphincter constricting muscle is the opposing muscle of the circle-

radius dilator muscle. The iris inner smaller circle-circumference changes size when constricting 

or dilating. The iris outer larger circle-circumference does not change size. The constricting 

muscle is located on the iris inner smaller circle-circumference. 

The back surface is covered by a heavily pigmented epithelial layer that is two cells thick (the 

iris pigment epithelium), but the front surface has no epithelium. This anterior surface projects as 

the dilator muscles. The high pigment content blocks light from passing through the iris to the 

retina, restricting it to the pupil.[1] The outer edge of the iris, known as the root, is attached to 

the sclera and the anterior ciliary body. The iris and ciliary body together are known as the 
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anterior uvea. Just in front of the root of the iris is the region referred to as the trabecular 

meshwork, through which the aqueous humour constantly drains out of the eye, with the result 

that diseases of the iris often have important effects on intraocular pressure and indirectly on 

vision. The iris along with the anterior ciliary body provide a secondary pathway for aqueous 

humour to drain from the eye. 

The iris is divided into two major regions: 

1. The pupillary zone is the inner region whose edge forms the boundary of the pupil. 

2. The ciliary zone is the rest of the iris that extends to its origin at the ciliary body. 

The collarette is the thickest region of the iris, separating the pupillary portion from the ciliary 

portion. The collarette is a vestige of the coating of the embryonic pupil.It is typically defined as 

the region where the sphincter muscle and dilator muscle overlap. Radial ridges extend from the 

periphery to the pupillary zone, to supply the iris with blood vessels. The root of the iris is the 

thinnest and most peripheral. 

 

The muscle cells of the iris are smooth muscle in mammals and amphibians, but are striated 

muscle in reptiles (including birds). Many fish have neither, and, as a result, their irides are 

unable to dilate and contract, so that the pupil always remains of a fixed size. 

 

Fig 2.2 Structure of human eye 

2.1.1 Front: 

The crypts of Fuchs are a series of openings located on either side of the collarette that allow the 

stroma and deeper iris tissues to be bathed in aqueous humor. Collagen trabeculae that surround 

the border of the crypts can be seen in blue irises. 

The midway between the collarette and the origin of the iris: These folds result from changes in 

the surface of the iris as it dilates.[citation needed] 
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Crypts on the base of the iris are additional openings that can be observed close to the outermost 

part of the ciliary portion of the iris 

 

 

Fig 2.3 Iris, front view 

 

2.1.2 Back: 

The radial contraction folds of Schwalbe are a series of very fine radial folds in the pupillary 

portion of the iris extending from the pupillary margin to the collarette. They are associated with 

the scalloped appearance of the pupillary ruff. 

The structural folds of Schwalbe are radial folds extending from the border of the ciliary and 

pupillary zones that are much broader and more widely spaced, continuous with the "valleys" 

between the ciliary processes. 

Some of the circular contraction folds are a fine series of ridges that run near the pupillary 

margin and vary in thickness of the iris pigment epithelium; others are in ciliary portion of iris. 

2.1.3 Microanatomy: 

From anterior (front) to posterior (back), the layers of the iris are: 

1. Anterior limiting layer 

2. Stroma of iris 

3. Iris sphincter muscle 

4. Iris dilator muscle (myoepithelium) 

5. Anterior pigment epithelium 

6. Posterior pigment epithelium 
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2.1.4 Development: 

The stroma and the anterior border layer of the iris are derived from the neural crest, and behind 

the stroma of the iris, the sphincter pupillae and dilator pupillae muscles, as well as the iris 

epithelium, develop from optic cup neuroectoderm.  

2.2 Eye Colour: 

The iris is usually strongly pigmented, with the colour typically ranging between brown, hazel, 

green, gray, and blue. Occasionally, the colour of the iris is due to a lack of pigmentation, as in 

the pinkish white of oculocutaneous albinism, or to obscuration of its pigment by blood vessels, 

as in the red of an abnormally vascularised iris. Despite the wide range of colours, the only 

pigment that contributes substantially to normal human iris colour is the dark pigment melanin. 

The quantity of melanin pigment in the iris is one factor in determining the phenotypic eye 

colour of a person. Structurally, this huge molecule is only slightly different from its equivalent 

found in skin and hair. Iris colour is due to variable amounts of eumelanin (brown/black 

melanins) and pheomelanin (red/yellow melanins) produced by melanocytes. More of the former 

is found in brown-eyed people and of the latter in blue- and green-eyed people. 

2.2.1 Genetic and physical factors determining iris colour: 

Iris colour is a highly complex phenomenon consisting of the combined effects of texture, 

pigmentation, fibrous tissue, and blood vessels within the iris stroma, which together make up an 

individual's epigenetic constitution in this context. A person's "eye colour" is the colour of one's 

iris, the cornea being transparent and the white sclera entirely outside the area of interest. 

Melanin is yellowish-brown to dark brown in the stromal pigment cells, and black in the iris 

pigment epithelium, which lies in a thin but very opaque layer across the back of the iris. Most 

human irises also show a condensation of the brownish stromal melanin in the thin anterior 

border layer, which by its position has an overt influence on the overall colour.[2] The degree of 

dispersion of the melanin, which is in subcellular bundles called melanosomes, has some 

influence on the observed colour, but melanosomes in the iris of humans and other vertebrates 

are not mobile, and the degree of pigment dispersion cannot be reversed. Abnormal clumping of 

melanosomes does occur in disease and may lead to irreversible changes in iris colour (see 

heterochromia, below). Colours other than brown or black are due to selective reflection and 

absorption from the other stromal components. Sometimes, lipofuscin, a yellow "wear and tear" 

pigment, also enters into the visible eye colour, especially in aged or diseased green eyes. 

The optical mechanisms by which the nonpigmented stromal components influence eye colour 

are complex, and many erroneous statements exist in the literature. Simple selective absorption 

and reflection by biological molecules (haemoglobin in the blood vessels, collagen in the vessel 
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and stroma) is the most important element. Rayleigh scattering and Tyndall scattering, (which 

also happen in the sky) and diffraction also occur. Raman scattering, and constructive 

interference, as in the feathers of birds, do not contribute to the colour of the human eye, but 

interference phenomena are important in the brilliantly coloured iris pigment cells (iridophores) 

in many animals. Interference effects can occur at both molecular and light-microscopic scales 

and are often associated (in melanin-bearing cells) with quasi crystalline formations, which 

enhance the optical effects. Interference is recognised by characteristic dependence of colour on 

the angle of view, as seen in eyespots of some butterfly wings, although the chemical 

components remain the same. White babies are usually born blue-eyed since no pigment is in the 

stroma, and their eyes appear blue due to scattering and selective absorption from the posterior 

epithelium. If melanin is deposited substantially, brown or black colour is seen; if not, they will 

remain blue or gray. 

All the contributing factors towards eye colour and its variation are not fully understood. 

Autosomal recessive/dominant traits in iris colour are inherent in other species, but colouration 

can follow a different pattern. 

                                             

Fig 2.4.1: Example of a gray-green-brown iris                         Fig 2.4.2: Example of a brown iris 

 

                                 

Fig 2.4.3: Example of a green-brown (hazel) iris 

 

2.2.1.1 Amber eyes: 
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Amber-coloured eyes are extremely rare in humans. They consist of a solid orange/gold colour 

that may contain lighter shades of the same pigment within the iris. This is an unusual 

occurrence that happens when the yellow pigment pheomelanin is dominant within the iris. 

Pheomelanin is also found on individuals with green eyes in much smaller amounts. This is 

because green eyes have a strong presence of both melanin and pheomelanin. Often in poor 

lighting, one may mistake amber eyes for brown. This also happens when viewed from far away 

or in pictures with poor lighting, as well. In natural or well-lit areas, though, telling the 

difference between the two colours is easy. Another common mistake people make is referring to 

amber eyes as hazel. Although similar, hazel eyes have a stronger presence of melanin with two 

very distinct colours within the iris (usually green/brown), and often contain many speckles or 

blotches of mixed hues. 

 

Fig 2.5: Adult male with amber-coloured eyes 

2.2.2 Different colours in the two eyes: 

Heterochromia (also known as a heterochromia iridis or heterochromia iridum) is an ocular 

condition in which one iris is a different colour from the other iris (complete heterochromia), or 

where the part of one iris is a different colour from the remainder (partial heterochromia or 

sectoral heterochromia). Uncommon in humans, it is often an indicator of ocular disease, such as 

chronic iritis or diffuse iris melanoma, but may also occur as a normal variant. Sectors or patches 

of strikingly different colours in the same iris are less common. Anastasius the First was dubbed 

dikoros (having two irises) for his patent heterochromia since his right iris had a darker colour 

than the left one. 

In contrast, heterochromia and variegated iris patterns are common in veterinary practice. 

Siberian Husky dogs show heterochromia,[8][better source needed] possibly analogous to the 

genetically determined Waardenburg syndrome of humans. Some white cat fancies (e.g., white 

Turkish Angora or white Turkish van cats) may show striking heterochromia, with the most 

common pattern being one uniformly blue, the other copper, orange, yellow, or green.[8] 

Striking variation within the same iris is also common in some animals, and is the norm in some 

species. Several herding breeds, particularly those with a blue merle coat colour (such as 

Australian Shepherds and Border Collies) may show well-defined blue areas within a brown iris, 

as well as separate blue and darker eyes.[citation needed] Some horses (usually within the white, 
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spotted, palomino, or cremello groups of breeds) may show amber, brown, white and blue all 

within the same eye, without any sign of eye disease 

 
Fig 2.6: Example of heterochromia - one eye of the subject is brown, the other hazel.  
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CHAPTER 3 

IMAGE ACQUISITION 

 
An image can be defined as a 2-D function f(x,y) where (x, y) is co-ordinate in two dimensional 

space and f is the intensity of that co-ordinate[3]. Each co-ordinate position is called as pixel. 

Pixel is the smallest unit of the image it is also called as picture element or pel. So digital images 

are composed of pixels, each pixel represents the colour (gray level for black and white images) 

at a single point in the image. Pixel is like tiny dot of particular colour. A digital image is a 

rectangular array of pixels also called as Bitmap. From the point of view of photography the 

digital images are of two types [4][5] 

 • Black and white Images.  

 • Colour Images. 

1. Black and White Images: 

Black and white images are made of different shades of gray. These different shades lies between 

0 to 255, where 0 refers to black, 255 refers to white and intermediate values refer to different 

shades of black and white. Grayscale refers to the range of neutral tonal values (shades) from 

black to white. 

 

2. Colour Image : 

Colour images are made up of coloured pixels. Colour can capture a     much broader range of 

values than grayscale. “The spectrum – the band of colours produced when sunlight passes 

through a prism – includes billions of colours, of which the human eye can perceive seven to ten 

million”. The electronic capture and display of colour is complicated. RGB (Red, Green, and 

Blue) is the most commonly adopted colour system. 

 

Example: A one-bit image can assign only one of two values to a single pixel: 1 or 0 (black or 

white). An 8-bit (28) grayscale image can assign one of 256 colours to a single pixel. A 24-bit 

(2(3x8)) RGB image (8-bits each for red, green and blue colour channels) can assign one of 16.8 

million colours to a single pixel. 

 

 

3.1  IMAGE ACQUISITION: 

 The general aim of Image Acquisition is to transform an optical image (Real World Data) into 

an array of numerical data which could be later manipulated on a computer, before any video or 

image processing can commence an image must be captured by camera and converted into a 

manageable entity. The Image Acquisition process consists of three steps: -  

1. Optical system which focuses the energy  

2. Energy reflected from the object of interest 

 3. A sensor which measure the amount of energy. Image Acquisition is achieved by suitable 

camera. We use different cameras for different application. If we need an x-ray image, we use a 

camera (film) that is sensitive to x-ray. If we want infra-red image, we use camera which are 
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sensitive to infrared radiation. For normal images (family pictures etc) we use cameras which are 

sensitive to visual spectrum. Image Acquisition is the first step in any image processing system. 

 

Table 3.1: Shades/Colours Depends on the Bits Required to Represent the Digital Image 

 
Bits/Digital 
Image type  

Shades/colours 

8 bits black and 
white image 

256 shades 

24 bits coloured 16.8 million colour 

10 bits black and 
white image 

1024 shades 

30 bits coloured 1 billion colour 

12 bits black and 
white image 

4096 shades 

 

3.1.1. IMAGE ACQUISITION CONCEPT: 

In order to capture an image a camera requires some sort of measurable energy. The energy of 

interest in this context is light or more generally electromagnetic waves. An EM waves can be 

described as mass less entity, a photon, whose electric and magnetic field varies sinusoidaly, 

hence the name waves. A photon can be described in three different ways: - 

1. A photon can be described By its energy E (measured in eV) 

2. A photon can be described by its frequency f (H2) 

3. A photon can be described by its wavelength 

λ(m) 

E = (hc)/ λ 

E = hf 

 

3.1.2 QUANTUM DETECTORS: 

Quantum Detector is the most important mechanism of image sensing and acquisition it relies 

upon the energy of absorbed photon being used to promote electrons from their stable state to 

a higher state above an energy threshold. Whenever this occurs, the properties of that 

material get altered in some measurable way. 
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Planck/Einstein came up with a relationship between λ of the incident photon and the E 

that it carries:- 

E = (hc)/ λ 

   On collision the photon transfer all or none of this quantum of energy to the electron. 

 

3.1.3 IMAGE ACQUISITION MODEL: 
 

The images are generated by combination of an illumination source and the reflection or 

absorption of the energy by the elements of scene being imaged. Illumination may be originated 

by radar, infrared energy source, computer generated energy pattern, ultrasound energy source, 

X-ray energy source etc. 

To sense the image, we use sensor according to the nature of illumination. The process of image 

sense is called image acquisition. 

By the sensor, basically illumination energy is transformed into digital image. The idea is that 

incoming illumination energy is transformed into voltage by the combination of input electrical 

energy and sensor material that is responsive to the particular energy that is being detected. 

The output waveform is response of sensor and this response is digitalized to obtain digital 

image. 

Image is represented by 2-D function f(x, y). Practically an image must be non-zero and finite 

quantity that is [1]: 

 

             0< f(x, y) <“                                     (2) 

• It is also discussed that for an image f (x, y), we have two factors: 

• The amount of source illumination incident on the scene being imaged. Let us represent it by : 

i(x, y) 

The amount of illumination reflected or absorbed by the object in the scene. Let us represent it by: 

 

r(x, y) 

Then f(x, y) can be represented by : f(x, y) =  i(x, y).r(x, y) (3) 

Where 0< i(x, y)<“ 

 

It means illumination will be a non-zero and finite quantity and its quantity depends on 

illumination source. 

and 0< r(x, y)<1 

Here 0 indicates no reflection or total absorption and 1 means no absorption or total reflection. 
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Fig 3.1: Image Acquisition Model 

 

 

3.1.4 TECHNIQUES TO PERFORM IMAGE ACQUISITION: 

 

Image Acquisition process totally depends on the hardware system which may have a sensor that 

is again a hardware device. A sensor converts light into electrical charges. The sensor inside a 

camera measures the reflected energy by the scene being imaged. The image sensor employed 

by most digital cameras is a charge coupled device (CCD) [5]. Some cameras use complementary 

metal oxide semiconductor (CMOS) technology instead [5]. 
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Fig.3.2: Inside a Digital Camera 

 

Both CCD and CMOS image sensors convert light into electrons. A simplified way to think about 

these sensors is to think of a 2-D array of thousands or millions of tiny solar cells. (in this case the 

sensors are called photosites). Once the sensor converts the light into electrons, it reads the 

value (accumulated charge) of each cell in the image. A CCD transports the charge across the 

chip and reads it at one corner of the array. An analog-to- digital converter (ADC) then turns 

each pixel’s value into a digital value by measuring the amount of charge at each photosite and 

converting that measurement to binary form. CMOS devices use several transistors at each 

pixel to amplify and move the charge using more traditional wires. CCD sensors create high-

quality, low-noise images. CMOS sensors are generally more susceptible to noise. 

CMOS sensors traditionally consume little power. CCDs, on the other hand, use a process 

that consumes lots of power. CCDs consume as much as 100 times more power than an 

equivalent CMOS sensor. CCD sensors have been mass produced for a longer period of time, 

so they are more mature. They tend to have higher quality pixels, and more of them. 
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Fig 3.3: After image acquisition it is sent for processing, transmission, display or storage 
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CHAPTER 4 

PIXEL EXTRACTION 

 

Pixel 
In digital imaging, a pixel, pel or picture element is a smallest addressable element in a raster 
image, or the smallest addressable element in an all points addressable display device; so it is 
the smallest controllable element of a picture represented on the screen. 
 
Each pixel is a sample of an original image; more samples typically provide more accurate 
representations of the original. The intensity of each pixel is variable. In colour imaging systems, 
a colour is typically represented by three or four component intensities such as red, green, and 
blue, or cyan, magenta, yellow, and black. 
 
In some contexts (such as descriptions of camera sensors), pixel refers to a single scalar 
element of a multi-component representation (called a photosite in the camera sensor context, 
although sensel is sometimes used), while in yet other contexts it may refer to the set of 
component intensities for a spatial position. 

4.1 Pixel Values: 

Each of the pixels that represents an image stored inside a computer has a pixel value which 

describes how bright that pixel is, and/or what colour it should be. In the simplest case of binary 

images, the pixel value is a 1-bit number indicating either foreground or background. For 

a grayscale images, the pixel value is a single number that represents the brightness of the pixel. 

The most common pixel format is the byte image, where this number is stored as an 8-bit integer 

giving a range of possible values from 0 to 255. Typically zero is taken to be black, and 255 is 

taken to be white. Values in between make up the different shades of gray. 

To represent colour images, separate red, green and blue components must be specified for each 

pixel (assuming an RGB colourspace), and so the pixel `value' is actually a vector of three 

numbers. Often the three different components are stored as three separate `grayscale' images 

known as colour planes (one for each of red, green and blue), which have to be recombined 

when displaying or processing. 

Multi-spectral images can contain even more than three components for each pixel, and by 

extension these are stored in the same kind of way, as a vector pixel value, or as separate colour 

planes. 

The actual grayscale or colour component intensities for each pixel may not actually be stored 

explicitly. Often, all that is stored for each pixel is an index into a colourmap in which the actual 

intensity or colours can be looked up. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mulimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colmap.htm
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Although simple 8-bit integers or vectors of 8-bit integers are the most common sorts of pixel 

values used, some image formats support different types of value, for instance 32-bit signed 

integers or floating point values. Such values are extremely useful in image processing as they 

allow processing to be carried out on the image where the resulting pixel values are not 

necessarily 8-bit integers. If this approach is used then it is usually necessary to set up a 

colourmap which relates particular ranges of pixel values to particular displayed colours. 

 

4.2 OpenCV Getting and Setting Pixels: 
 

4.2.1 What are pixels? 

 
Pixels are the raw building blocks of an image. Every image consists of a set of pixels. There is 

no finer granularity than the pixel. 

Normally, a pixel is considered the “color” or the “intensity” of light that appears in a given 

place in our image. 

If we think of an image as a grid, each square in the grid contains a single pixel. Let’s look at the 

example image in figure 4.1 

 

 
 

Fig 4.1: This image is 600 pixels wide and 450 pixels tall for a total of 600 x 450 = 

270,000 pixels. 

 

 

Most pixels are represented in two ways: 

1. Grayscale/single channel 

2. Color 

In a grayscale image, each pixel has a value between 0 and 255, where 0 corresponds to “black” 

and 255 being “white.” The values between 0 and 255 are varying shades of gray, where values 

closer to 0 are darker and values closer 255 are lighter. 
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Fig 4.2 : Image gradient demonstrating pixel values going from black (0) to white (255) 

 

The grayscale gradient image in Figure 4.2 demonstrates darker pixels on the left-hand side and 

progressively lighter pixels on the right-hand side. 

 

Color pixels, however, are normally represented in the RGB color space — one value for the Red 

component, one for Green, and one for Blue leading to a total of 3 values per pixel: 

 
Fig 4.3: The RGB cube. 

 

Other color spaces exist (HSV (Hue, Saturation, Value), L*a*b*, etc.). 

 

Each of the three Red, Green, and Blue colors are represented by an integer in the range from 0 

to 255, which indicates how “much” of the color there is. Given that the pixel value only needs 

to be in the range [0, 255], we normally use an 8-bit unsigned integer to represent each color 

intensity. 

We then combine these values into an RGB tuple in the form (red, green, blue).This tuple 

represents our color. 
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To construct a white color, we would completely fill each of the red, green, and blue buckets, 

like this: (255, 255, 255) — since white is the presence of all colors. 

 

Then, to create a black color, we would completely empty each of the buckets: (0, 0, 0)— since 

black is the absence of color. 

 

To create a pure red color, we would completely fill the red bucket (and only the red 

bucket): (255, 0, 0).Look at the figure4.4 to make this concept more clear. 

 

 
 

Fig 4.4: Here, we have four examples of colors and the “bucket” amounts for each of the Red, 

Green, and Blue components, respectively. 

 

In the top-left example, we have the color white — each of the Red, Green, and Blue buckets 

have been completely filled to form the white color. 

And on the top-right, we have the color black — the Red, Green, and Blue buckets are now 

totally empty. 

Similarly, to form the color red in the bottom-left, we simply fill the Red bucket completely, 

leaving the other Green and Blue buckets totally empty. 

Finally, blue is formed by filling only the Blue bucket, as demonstrated in the bottom-right. 

For your reference, here are some common colors represented as RGB tuples: 

1. Black:  

(0, 0, 0) 

2. White:  

(255, 255, 255) 

3. Red:  

(255, 0, 0) 
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4. Green:  

(0, 255, 0) 

5. Blue:  

(0, 0, 255) 

6. Aqua:  

(0, 255, 255) 

7. Fuchsia:  

(255, 0, 255) 

8. Maroon:  

(128, 0, 0) 

9. Navy:  

(0, 0, 128) 

10. Olive:  

(128, 128, 0) 

11. Purple:  

(128, 0, 128) 

12. Teal:  

(0, 128, 128) 

13. Yellow:  

(255, 255, 0) 

 

4.2.2 Overview of the image coordinate system in OpenCV: 

 
As  mentioned in Figure 4.1, an image is represented as a grid of pixels. Imagine our grid as a 

piece of graph paper. Using this graph paper, the point (0, 0) corresponds to the top-left corner of 

the image (i.e., the origin). As we move down and to the right, both the x and y-values increase. 

Let’s look at the image in Figure 4.5 to make this point more clear: 
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Fig 4.5: In OpenCV, pixels are accessed by their (x, y)-coordinates. The origin, (0, 0), is located 

at the top-left of the image. OpenCV images are zero-indexed, where the x-values go left-to-

right (column number) and y-values go top-to-bottom (row number). 

 

Here, we have the letter “I” on a piece of graph paper. We see that we have an 8 x 8 grid with 64 

total pixels. 

The point at (0, 0) corresponds to the top-left pixel in our image, whereas the point (7, 

7) corresponds to the bottom-right corner. 

It is important to note that we are counting from zero rather than one. The Python language is 

zero-indexed, meaning that we always start counting from zero. 

Finally, the pixel 4 columns to the right and 5 rows down is indexed by the point (3, 4), keeping 

in mind that we are counting from zero rather than one. 

 

4.2.3 Configuring your development environment: 
    OpenCV Getting and Setting Pixels: 
 

 
4.2.3.1 Project structure: 

 
Before we start looking at code, let’s review our project directory structure: 

OpenCV Getting and Setting Pixels 

 

 
 

opencv_getting_setting.py, which will allow us to access and manipulate the image pixels from 

the image  

adrian.png 

. 

4.2.3.2 Getting and setting pixels with OpenCV :  
 

Let us learn how to get and set pixels with OpenCV. Open the opencv_getting_setting.py file in 

your project directory structure. 
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Lines 2 and 3 import our required Python packages. We only need argparse for our command 

line arguments cv2 for our OpenCV bindings. 

The –image command line argument points to the image we want to manipulate residing on disk. 

By default, the –image command line argument is set to adrian.png 

. 

Next, let us load this image and start accessing pixel values: 

 

 

 
 

 

Lines 13-15 load our input image 

 

Images in OpenCV are represented by NumPy arrays. To access a particular image pixel, all we 

need to do is pass in the (x, y)-coordinates as image[y, x] 

 
 

  
 

 

Line 19 accesses the pixel located at (0, 0), which is the top-left corner of the image. In return, 

we receive the blue, green, and red intensities (BGR), in that order. 



24 
 

 

The big question here is, Why does OpenCV represent images in BGR channel ordering rather 

than the standard RGB? 

The answer is that back when OpenCV was originally developed, BGR ordering was the 

standard! It was only later that the RGB order was adopted. The BGR ordering is standard in 

OpenCV, so get used to seeing it. 

Line 23 then accesses the pixel located at x = 50, y = 20 using the array indexing of image[20, 

50] 

. 

But wait . . . isn’t that backward? Shouldn’t it instead be image [50, 20] since x = 50 and y = 20? 

Let’s back up a step and consider that an image is simply a matrix with a width (number of 

columns) and height (number of rows). If we were to access an individual location in that matrix, 

we would denote it as the x-value (column number) and y-value (row number). 

 

Therefore, to access the pixel located at x = 50, y = 20, you pass the y-value first (the row 

number) followed by the x-value (the column number), resulting in  

image[y, x] 

. 

Note: we have found that the concept of accessing individual pixels with the syntax of image[y, 

x] is the correct syntax based on the fact that the x-value is your column number (i.e., width), 

and the y-value is your row number (i.e., height). 

 

Lines 27 and 28 update the pixel located at x = 50, y = 20, setting it to red, which is (0, 0, 255) in 

BGR ordering. Line 29 then prints the updated pixel value to our terminal, thereby demonstrating 

that it has been updated. 

Next, let us learn how to use NumPy array slicing to grab large chunks/regions of interest from 

an image: 

 

  
 

On Line 33, we compute the center (x, y)-coordinates of the image. This is accomplished by 

simply dividing the width and height by two, ensuring integer conversion (since we cannot 

access “fractional pixel” locations). 

 

Then, on Line 38, we use simple NumPy array slicing to extract the [0, cX) and [0, cY) region of 

the image. In fact, this region corresponds to the top-left corner of the image! To grab chunks of 

an image, NumPy expects we provide four indexes: 
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• Start y: The first value is the starting y-coordinate. This is where our array slice will start 

along the y-axis. In our example above, our slice starts at y = 0. 

• End y: Just as we supplied a starting y-value, we must provide an ending y-value. Our 

slice stops along the y-axis when y = cY. 

• Start x: The third value we must supply is the starting x-coordinate for the slice. To grab 

the top-left region of the image, we start at x = 0. 

• End x: Lastly, we need to provide the x-axis value for our slice to stop. We stop when x = 

cX. 

Once we have extracted the top-left corner of the image, Line 39 shows the cropping result. 

Notice how our image is just the top-left corner of our original image: 

 

 
 

Let’s extend this example a little further so we can get some practice using NumPy array slicing 

to extract regions from images.In a similar fashion to the example above, Line 44 extracts 

the top-right corner of the image, Line 45 extracts the bottom-right corner, and Line 

46 the bottom-left. 

Finally, all four corners of the image are displayed on screen on Lines 47-49, like this: 

 

 

  
 

On Line 52, you can see that we are again accessing the top-left corner of the image; however, 

this time, we are setting this region to have a value of  (0, 255, 0) (green). Lines 55 and 56 then 

show the results of our work: 

 

4.2.3.3 OpenCV pixel getting and setting results:  

 
The individual pixel can be set using the following command.  
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Once our script starts running, you should see some output printed to your console. 

 

The first line of output tells us that the pixel located at (0, 0) has a value of R = 233, G = 240, 

and B = 246. The buckets for all three channels are nearly white, indicating that the pixel is very 

bright. 

The next two lines of output show that we have successfully changed the pixel located at (50, 

20) to be red rather than the (nearly) white color. 

 

4.3 System Requirements  

4.3.1 Major Software’s and Libraries Used 

Google Collab  

Google Collab is a free Jupyter notebook environment that runs entirely in the cloud. Most 

importantly, it does not require a setup and the notebooks that you create can be simultaneously 

edited by your team members - just the way you edit documents in Google Docs. Collab supports 

many popular machine learning libraries which can be easily loaded in your notebook.  

As a programmer, we can perform the following using Google Collab:  

• Write and execute code in Python  
• Document your code that supports mathematical equations  
• Import/Save notebooks from/to Google Drive  
• Integrate PyTorch, TensorFlow, Keras, OpenCV  
• Free Cloud service with free GPU  

Python: The programming style of Python is simple, clear and it also contains powerful different 

kinds of classes. Moreover, Python can easily combine other programming languages, such as C 

or C++. As a successful programming language, it has its own advantages:  

• Simple and easy to learn  
• Open source  
• Scalability  

OpenCV: OpenCV (Open source computer vision) is a library of programming functions mainly 

aimed at real- time computer vision. The library is cross-platform and free for use under the 

open-source BSD license. OpenCV supports the deep leaning framework TensorFlow, 

Torch/PyTorch and caffe.  



27 
 

NumPy: In Python, there is data type called array. To implement the data type of array with 

python, NumPy is the essential library for analysing and calculating data. They are all open 

source libraries. NumPy is mainly used 22 for the matrix calculation  

Pandas , Matplotlib: pandas is a fast, powerful, flexible and easy to use open source data 

analysis and manipulation tool,built on top of the Python programming language. Matplotlib is a 

comprehensive library for creating static, animated, and interactive visualizations in Python. 

Matplotlib makes easy things easy and hard things possible.  

Pillow: Python Imaging Library (abbreviated as PIL) (in newer versions known as Pillow) is a 

free and open-source additional library for the Python programming language that adds support 

for opening, manipulating, and saving many different image file formats.  

The Python Imaging Library adds image processing capabilities to your Python interpreter. 

This library provides extensive file format support, an efficient internal representation, and 

powerful image processing capabilities. The core image library is designed for fast access to data 

stored in a few basic pixel formats. It should provide a solid foundation for a general image 

processing tool.  
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CHAPTER 5 

COLOUR DETECTION 

 
Colour, one of the most influential attributes of light, has a distinctive importance in various 

industries and scientific applications. The colour of a material can be used to evaluate the 

properties of that material. Colour sensors are employed to recognise/detect the colour of a 

material in RGB (red, green, blue) scale, while rejecting the unwanted infrared or ultraviolet 

light. The ultimate challenge with colour sensing has been to detect subtle differences among 

similar or highly reflective surfaces. Fortunately, the advances in electronics, optics and software 

technology have led to the development of colour recognition techniques that involve outputting 

the reading intensity and colour value. These colour recognition systems are deemed highly 

suitable for quality control applications in various industries, such as food, automotive, glass, 

manufacturing, for ensuring high productivity and cost reduction. 

A typical colour sensor comprises a high-intensity white LED (light-emitting diode) that projects 

a modulated light onto the target. The white light holds a mixture of three basic colours having 

different wavelengths as mentioned above. These colours combine with one another to form 

different other shades of colours. When the white light falls on any surface, based on the 

properties of the surface material, some of the wavelengths of light are absorbed and some are 

reflected. A human eye detects the colour of the material when these reflected wavelengths fall 

on it. 

Colour recognition systems based on white LED allow for a greater spectrum evaluation than 

those based on RGB LED. Apart from LEDs, there are various integral light sources such as 

fibre optics, lasers, and halogen lamps that can be used in the design of colour sensors. 

5.1 What is Colour Detection? 

Colour detection is the process of detecting the name of any colour. Simple, isn’t it? Well, for 

humans this is an extremely easy task but for computers, it is not straightforward. Human eyes 

and brains work together to translate light into colour. Light receptors that are present in our eyes 

transmit the signal to the brain. Our brain then recognizes the colour. 

5.2 How Colour Sensors Work? 

Colour sensors are developed based on diffuse technology that can detect a wide range of 

colours. The combination of colour sensitive filters and sensors array perform colour sensing, 

which is further used to analyse the colour present in an image or in a specified object. The 

colour measurement process involves a light source to illuminate the surface, the target surface, 

and a receiver that measures the reflected wavelengths. A white light emitter is used to illuminate 

the surface. The sensor then activates three filters with three wavelength sensitivities to measure 

the wavelengths of RGB colours respectively. Based on these three colours, the colour of the 

material is determined. 
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Modern colour sensing has seen the involvement of fibre optics in the colour detection process. 

In this technology, the light transmission to the object and back depends on the optical glass 

fibres, which operate on the principle of total internal reflection. This phenomenon causes fibre 

to act as a waveguide and enables the complete reflection of light. In a fibre optic colour sensor, 

the white light spot is projected via the fibre optic onto the target surface; the part of light that is 

reflected back from the target is directed onto the detector via the same optical fibre. The 

reflected light is then separated into long, medium and short-wave light components 

 

White light is a mixture of three basic colours known as primary colours. They are red, blue and 

green. These colours have different wavelengths. Combinations of these colours at different 

proportions create different types of colours. When the white light falls on any surface, some of 

the wavelengths of the light are absorbed by the surface while some are reflected based on the 

properties of the surface material. Colour of the material is detected when these reflected 

wavelengths fall on the human eye. A material reflecting wavelengths of red light appears as red. 

The component used to detect colours is the Colour sensor. 

colours are made up of 3 primary colours; red, green, and blue. In computers, we define each 

colour value within a range of 0 to 255. So, in how many ways we can define a colour? The 

answer is 256*256*256 = 16,581,375. There are approximately 16.5 million different ways to 

represent a colour. In our dataset, we need to map each colour’s values with their corresponding 

names. But don’t worry, we don’t need to map all the values. We will be using a dataset that 

contains RGB values with their corresponding names. 

 

Finding the Euclidean distance from the detected pixel to the colours present in the data sheet. 

The Euclidean Distance between two points in either the plane or 3-dimensional space measures 

the length of a segment connecting the two points. It is the most obvious way of representing 

distance between two points. The Euclidean distance between two points in either the plane or 3-

dimensional space measures the length of a segment connecting the two points. It is the most 

obvious way of representing distance between two points. 

The Pythagorean Theorem can be used to calculate the distance between two points, as shown in 

the figure below. If the points (x1, y1) and (x2,y2) are in 2-dimensional space, then the 

Euclidean distance between them is given in Eq.1 √((x2 − x1)2 +  (y2 − y1)2))              (1) 

 

Now after calculating the distance, the pixel with the shortest distance from the colours in data 

sheet is considered as the match colour and then displayed as output. Table 1. shows few of the 

1500 different colours it can identify using this method. 

 

Further the colour of the Iris is found through the code below: 

1. Function to calculate minimum distance from all the colours and get the minimum distance: 
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2. Get the x,y Coordinates: 

 

 
 

 
3. open the window and find the colour of the Iris of the person as sjown in fig 5.1 and fig 5.2: 
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Table 5.1. Sample Colours 

 

 

 

 

 

 

 

 

 

The displayed colour along with the RGB values will be displayed on the image (In an image the 

place where we want to identify the colour ). In the entire input frame when we are selecting the 

region where we want to know the exact colour [3]-[7], we are selecting the region by using 

mouse click for example either by left button double click or by right button double click. In this 

case, since we need to identify the colour of the iris the process identifies the colour of the Iris 

can be just automated. 

When the function is executed the pixels values at the target region is taken and find the distance 

among them and displaying the colour in small rectangular box along with RGB values [8].  This 

data is stored in database against the name of the person and his/her iris data. “Fig. 2, 3” shows 

the colour of the Iris of two different persons. 

 

 
 

Fig.5.1. Iris colour detected of a person1 
 

Colour 

name 

Hex code R G B 

Gray 

 

#808080 

 

93 138 168 

Antique 

Ruby 

#841b2d 

 

132 27 45 

Jet #343434 

 

52 52 52 

Amber #ffbf00 

 

255 191 0 
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Fig.5.2. Iris colour detected of a person2 
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CHAPTER 6 

Scale Invariant Feature Transform (SIFT) 

 

SIFT 

The scale-invariant feature transform (SIFT) is an algorithm used to detect and describe local 

features in digital images. It locates certain key points and then furnishes them with quantitative 

information (so-called descriptors) which can for example be used for object recognition. The 

descriptors are supposed to be invariant against various transformations which might make 

images look different although they represent the same object(s).  

We now have our final set of key points (well, almost) and will, as the last step, compute 

the descriptors for each of them. 

This step is pretty similar to the one above. We will again compute a histogram for the 

distribution of the directions of the gradients in a neighbourhood of each key point. The 

difference is that this time the neighbourhood is a circle and the coordinate system is rotated to 

match the reference orientation. Also, the full truth is that we not only compute one, but 

rather sixteen histograms. Each histogram corresponds to a point near the center of the new 

coordinate system and the contribution of each gradient from within the circle-shaped 

neighbourhood is distributed over these histograms according to proximity. 

(Also, as a minor technical detail, some key points might be discarded at this last step if their 

circle wouldn't fit into the image.) 

You can click on the key points above to see the neighbourhood and the coordinate system used 

for the descriptor generation below. You will also see a rendering of the actual descriptor, i.e. of 

the histograms (which are normalized and represented internally as 4×4×8=128 8-bit integers). 

(Like above, one should actually imagine the histograms to be rendered as pie charts because 

we're talking about angles here.) 

So, what do we have now? We have a potentially large set of descriptors. Practical experience 

has shown that these descriptors can often be used to identify objects in images even if they are 

depicted with different illumination, from a different perspective, or in a different size compared 

to a reference image. Why does this work? Here are some reasons: 

• Key points are extracted at different scales and blur levels and all subsequent 

computations are performed within the scale space framework. This will make the 

descriptors invariant to image scaling and small changes in perspective. 

• Computation relative to a reference orientation is supposed to make the descriptors robust 

against rotation. 

• Likewise, the descriptor information is stored relative to the key point position and thus 

invariant against translations. 

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Pie_chart
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• Many potential key points are discarded if they are deemed unstable or hard to locate 

precisely. The remaining key points should thus be relatively immune to image noise. 

• The histograms are normalized at the end which means the descriptors will not store the 

magnitudes of the gradients, only their relations to each other. This should make the 

descriptors invariant against global, uniform illumination changes. 

• The histogram values are also thresholded to reduce the influence of large gradients. This 

will make the information partly immune to local, non-uniform changes in illumination. 

 

Fig6.1: Histogram values are thresholded to reduce the influence of large gradients. 

We start with the picture you provided or with our default picture, a portrait of Carl Friedrich 

Gauß. (Or actually we start with the 64x64 version you see at the top of the page. We might have 

shrunk your original picture in order to keep the size of this page manageable). 

The algorithm first doubles the width and height of its input using bilinear interpolation. That is 

the first picture above, the one in its own row. 

This picture is subsequently blurred using a Gaussian convolution. That's indicated by the orange 

arrow. 

What follows is a sequence of further convolutions with increasing standard deviation. Each 

picture further to the right is the result of convoluting its left neighbour, as indicated by the green 

arrow. 

Finally, the antepenultimate picture of each row is down sampled - see the blue arrow. This starts 

another row of convolutions. We repeat this process until the pictures are too small to proceed. 

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Standard_deviation
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(By the way, each row is usually called an octave since the sampling rate is decreased by a factor 

of two per stage.) 

What we now have constructed is called a scale space. The point of doing this is to simulate 

different scales of observation (as you move further down in the table) and to suppress fine-scale 

structures (as you move to the right). 

Note that the representation above has been normalized - see the gray chart at its bottom. This 

will be especially noticeable for low-contrast images. (An input with full contrast will have black 

at 0.00 and white at 1.00.) 

Now for the next step. Let's imagine for a moment that each octave of our scale space were a 

continuous space with three dimensions: the x and y coordinates of the pixels and the standard 

deviation of the convolution. In an ideal world, we would now want to compute the Laplacian of 

the scale-space function which assigns gray values to each element of this space. The extrema of 

the Laplacian would then be candidates for the key points our algorithm is looking for. But as we 

have to work in a discrete approximation of this continuous space, we'll instead use a technique 

called difference of Gaussians. 

For each pair of horizontally adjacent pictures in the table above, we compute the differences of 

the individual pixels. 

 

 Fig 6.2: Assigning gray values to each element 

If you click on one of the pixels above, you will see below how the difference for this individual 

pixel was calculated. You'll see a clipping of the difference image in the middle while to the left 

and right you'll see the corresponding clippings from the two scale space images which were 

subtracted. Note that bright spots in the difference image mean there was an increase in 

brightness while dark spots mean the opposite. Medium gray (see the marker in the gray chart 

above) indicates that there was no change. 

https://en.wikipedia.org/wiki/Octave_%28electronics%29
https://en.wikipedia.org/wiki/Scale_space
https://en.wikipedia.org/wiki/Normalization_%28image_processing%29
https://en.wikipedia.org/wiki/Laplace_operator
https://en.wikipedia.org/wiki/Difference_of_Gaussians
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(All the differences are usually comparatively small, by the way. If the difference images hadn't 

been normalized, we'd see mostly or only medium gray.) 

 

Fig 6.3: Identifying the bright spots in the difference image mean 

The discrete extrema of these difference images will now be good approximations for the actual 

extrema we talked about above. A discrete maximum in our case is a pixel whose gray value is 

larger than those of all of its 26 neighbour pixels; and a discrete minimum is of course defined in 

an analogous way. Here we count as "neighbours" the eight adjacent pixels in the same picture, 

the corresponding two pixels in the adjacent pictures in the same octave, and 

finally their neighbors in the same picture. 

The extrema we've found are marked below. (Some are marked with yellow circles. These are 

indeed extrema, but their absolute values are so small that we'll discard them before proceeding. 

The algorithm assumes that it's likely these extrema exist only due to image noise.) 

 

Fig 6.4: Finding the extrema values 

You can click on each of the extrema above to see the pixel and its 26 neighbours rendered 

below. (Note that the values shown are of course rounded and thus some of the neighbouring 

values might look identical to the extremal value although in reality they aren't.) 
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Fig5: course rounded and thus some of the neighbouring values might look identical to the 

extremal value 

The extrema we've found so far will of course have discrete coordinates. We now try to refine 

these coordinates. This is done (for each extremum) by approximating the quadratic Taylor 

expansion of the scale-space function and computing its extrema. (The gradient and 

the Hessian are approximated using finite differences.) This is an iterative process and either we 

are able to refine the location or we give up after a couple of steps and discard the point. 

Now that we have better ("continuous") coordinates, we also do a bit more. We try to identify 

(and discard) key point candidates which lie on edges. These aren't good key points as they are 

invariant to translations parallel to the edge direction. Edge extrema are found by comparing 

the principal curvatures of the scale-space function (or rather its projection onto the picture 

plane) at the corresponding locations. (This is done with the help of the trace and 

the determinant of the Hessian, but we won't discuss the details here.) 

The remaining key points are shown below. (As we now have better estimates regarding their 

position, we can also discard some more low-contrast points. These are again marked with 

yellow colour.) 

 

https://en.wikipedia.org/wiki/Taylor_expansion
https://en.wikipedia.org/wiki/Taylor_expansion
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Principal_curvature
https://en.wikipedia.org/wiki/Trace_%28linear_algebra%29
https://en.wikipedia.org/wiki/Determinant
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Fig 6.5 : Finding better estimates regarding their position. 

You can click on the key points above to see in the table below how their scale-space coordinates 

have been refined. 

 discrete interpolated 

x   

y   

scale   

You might have the impression that there are some "new" points which weren't among the 

extrema further above. But these will be points which moved from one scale picture to another 

one. (For example, if a point was originally in the middle, i.e. if its scale value had been 2, the 

refined value could now be 2.57. That would mean it'd now appear on the right as the nearest 

integer would now be 3.) 

The algorithm now assigns to each remaining key point its reference orientation, if possible. 

Very roughly, we observe all gradients in the direct neighbourhood of such a point and see if 

many of them have approximately the same direction. 

(The technical details are as follows: For each pixel in a square-shaped patch around the key 

point, we approximate the gradient using finite differences. Recall that the gradient points in the 

direction of the greatest increase and its magnitude is the slope in that direction. The interval 

from 0 to 360 degrees is divided into a fixed number of bins (36 by default) and the value of the 

bin the gradient's direction belongs to is incremented by the gradient's magnitude after it has 

been multiplied with a Gaussian weight. The latter is done to reduce the contribution of more 

distant pixels. The resulting histogram, i.e. the list of bins, is then smoothed by repeated box 

blurs. Finally, extrema of this histogram are identified and selected if their value exceeds a 

certain threshold. A better approximation for the reference orientation is then computed as the 

maximum of the quadratic interpolation of the histogram extremum and the values in its two 

neighbouring bins.) 

Key points near the image border which don't have enough neighbouring pixels to compute a 

reference orientation are discarded. Key points without a dominating orientation are also 

discarded. On the other hand, key points with more than one dominating orientation might 

appear more than once in the next steps, namely once per orientation. 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Slope
https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Box_blur
https://en.wikipedia.org/wiki/Box_blur
https://en.wikipedia.org/wiki/Polynomial_interpolation
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Fig 6.6 : Extrema of this histogram are identified and finding Threshold values 

If you click on one of the key points above, you will see below to the left the part of its 

neighbourhood that was investigated and the reference orientation that was computed. To the 

right, you will see the (smoothed and normalized) histogram from which this orientation was 

derived. 

We now have our final set of key points (well, almost) and will, as the last step, compute 

the descriptors for each of them. 

This step is pretty similar to the one above. We will again compute a histogram for the 

distribution of the directions of the gradients in a neighbourhood of each key point. The 

difference is that this time the neighbourhood is a circle and the coordinate system is rotated to 

match the reference orientation. Also, the full truth is that we not only compute one, but 

rather sixteen histograms. Each histogram corresponds to a point near the center of the new 

coordinate system and the contribution of each gradient from within the circle-shaped 

neighbourhood is distributed over these histograms according to proximity. 

(Also, as a minor technical detail, some key points might be discarded at this last step if their 

circle wouldn't fit into the image.) 

You can click on the key points above to see the neighbourhood and the coordinate system used 

for the descriptor generation below. You will also see a rendering of the actual descriptor, i.e., of 

the histograms (which are normalized and represented internally as 4×4×8=128 8-bit integers). 

(Like above, one should actually imagine the histograms to be rendered as pie charts because 

we're talking about angles here.) 

https://en.wikipedia.org/wiki/Pie_chart
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So, what do we have now? We have a potentially large set of descriptors. Practical experience 

has shown that these descriptors can often be used to identify objects in images even if they are 

depicted with different illumination, from a different perspective, or in a different size compared 

to a reference image. Why does this work? Here are some reasons: 

• Key points are extracted at different scales and blur levels and all subsequent computations are 

performed within the scale space framework. This will make the descriptors invariant to image 

scaling and small changes in perspective. 

• Computation relative to a reference orientation is supposed to make the descriptors robust 

against rotation. 

• Likewise, the descriptor information is stored relative to the key point position and thus invariant 

against translations. 

• Many potential key points are discarded if they are deemed unstable or hard to locate precisely. 

The remaining key points should thus be relatively immune to image noise. 

• The histograms are normalized at the end which means the descriptors will not store the 

magnitudes of the gradients, only their relations to each other. This should make the descriptors 

invariant against global, uniform illumination changes. 

• The histogram values are also thresholded to reduce the influence of large gradients. This will 

make the information partly immune to local, non-uniform changes in illumination. 

6.1 SIFT(Scale-invariant feature transform) 

The main steps of SIFT is Feature point Detection 

6.1.1 Feature point detection 

As its name shows, SIFT has the property of scale invariance, which makes it better than Harris. 

Harris is not scale-invariant, a corner may become an edge if the scale changes, as shown in the 

following image. 

 

Fig 6.7: Feature point detection 

An inherent property of objects in the world is that they only exist as meaningful entities over 

certain ranges of scale. A simple example is the concept of a branch of a tree, which makes sense 

only at a scale from, say, a few centimeters to at most a few meters. It is meaningless to discuss 

the tree concept at the nanometer or the kilometer level. At those scales it is more relevant to talk 

https://en.wikipedia.org/wiki/Harris_Corner_Detector
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about the molecules that form the leaves of the tree, or the forest in which the tree grows. 

Similarly, it is only meaningful to talk about a cloud over a certain range of coarse scales. At finer 

scales it is more appropriate to consider the individual droplets, which in turn consist of water 

molecules, which consist of atoms, which consist of protons and electrons etc. 

The scale of an image landmark is its (rough) diameter in the image. It is denoted by σ, which is 

measured in pixels, you can think scale invariance as that we can detect similar landmarks even if 

their scale is different. 

 

 

 

Fig 6.8:  scale invariance as that we can detect similar landmarks. 
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Fig 6.9: A pyramid representation is obtained by successively reducing the image size by 

combined smoothing and sampling. 

 

We can find the features under various image sizes. Besides, we can also use the Laplacian of 

Gaussian(LoG) with different σ to achieve this.Let’s first have a look at LoG. As Li Yin’s 

article indicates, the LoG operation goes like this. You take an image, and blur it a little (using 

Gaussian kernel). And then, you calculate the sum of second-order derivatives on it (or, the 

“Laplacian”). This locates edges and corners on the image. These edges and corners are good for 

finding keypoints (note that we want a keypoint detector, which means we will do some extra 

operations to suppress the edge). LoG is often used for blob detection (I will explain it later). 

Remember the relationship between convolution and differentiation. 

 

Take a 1-D example, f is a scanline of an image (i.e. the pixel array from a line of an image). 

In this project let us take the sample data.Let us consider the there is a huge amount of biometric 

data based on iris data (including colour of the iris) of people in an organization. Table 2. gives 

the sample table of the iris colour data of people in an organization. 

https://medium.com/lis-computer-vision-blogs/scale-invariant-feature-transform-sift-detector-and-descriptor-14165624a11
https://medium.com/lis-computer-vision-blogs/scale-invariant-feature-transform-sift-detector-and-descriptor-14165624a11
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The Feature matching done on Iris achieved through the code below: 

 

 

 

 

Table.6.1. Sample data of people in an organization with their iris colour data present against 

their name 
 

 

S no. Name of the person Iris colour 

1. John red 

2. Rahul gray 

3. Raju 

 

hazel 

4. Rahim red 

 

 

 

Let us consider john is the person on which we need to find the biometrics. firstly, after 

detecting the colour from the data base, we pick the data off all the members with the matched 

colour. Table 3. shows the reduced data on which we need to scan to find the biometric of john 

(i.e., all the columns with red iris colour gets selected). 
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Table.6.2 Reduced data table based on the identified colour 

 

 

S no. Name of the person Iris colour 

1. John red 

4. Rahim red 

 

 

Later, using input iris data of the person to be matched is matched with the data present in the 

reduced data through sift. The scale-invariant feature transform (SIFT) is a feature detection 

algorithm in computer vision to detect and describe local features in images [8],[9]. An object is 

recognized in a new image by individually comparing each feature from the new image to this 

database and finding candidate matching features based on Euclidean distance of their feature 

vectors. From the full set of matches, subsets of key points that agree on the object and its 

location, scale, and orientation in the new image are identified to filter out good matches.  
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CHAPTER 7 

 

RESULTS 
 

The displayed colour along with the RGB values will be displayed on the image (In an image the 

place where we want to identify the colour) . 

 In the entire input frame when we are selecting the region where we want to know the exact 

colour. The precise colour along with their RGB values are displayed. The following figures 

shows the results  

 
 

Fig.7.1. Iris colour detected of a person1 
 

 

 

 
 

 

Fig.7.2. Iris colour detected of a person2 
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After detecting the colour of the Iris, through the SIFT algorithm, the Iris pattern (i.e., 

rings, crypts, furrows) is matched and checked are for authenticity as shown on the figure below. 

 

 

 
 

Fig.7.3. Iris feature matching done through SIFT algorithm on an Iris (sample 1) 

 

 

 
 

Fig.7.4. Iris feature matching done through SIFT algorithm on an Iris (sample 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

CONCLUSIONS 

 
Therefore, through SIFT algorithm we have identified the identical match and found the 

particular person’s biometrics. “Fig. 4” shows the feature matching of Iris using SIFT algorithm. 

Also, because we have developed a process to identify the exact name of the colour in the first 

place, the data to be matched is reduced to maximum extent, thereby improving the system 

efficiency and therefore the load on the server gets reduced resulting in faster response. 

 

In the above sample process, we have seen that the results are obtained 50% faster since the iris 

of john is tested only with the two persons instead of four. The system improved efficiency can 

be seen more evident if we consider large data like data of people in an entire state or the data of 

an entire country. 

 

The work carried out in this paper is to improve system efficiency during Iris detection by 

preliminary screening of data on basis of colour. From the result obtained we could see that the 

process we have developed can identify the colour of the Iris. On the basis of these results, it is 

clear that we can improve the efficiency of the biometric systems as a particular person’s 

biometric information is searched against only a limited set of data where the result colour 

matches with the colour of the Iris in the database, thereby improving the system efficiency. The 

motivation behind the formulating of this process is to develop more efficient biometrics system.  

 

FUTURE WORK 
 

The process formulated is a prototype. A large database is created to maintain the records of the 

Iris colour and Iris data using a more detailed images of the eye with a sophisticated, high-

resolution digital camera at visible or infrared wavelengths. This process can be extended to 

applications like biometric attendance system, it can also be used in voting systems due to its 

high efficiency and precision. It can also be used in identifying the  
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